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Abstract 

Popular media have made many predictions about the dramatic changes self-driving cars (SDCs) 

will eventually bring about in society.  Some prominent people working in the field worry that 

these predictions grossly overstate what can reasonably be expected of SDCs and may actually 

discredit the entire field when SDCs fail to meet expectations. Despite this concern, these 

researchers believe that SDCs will eventually prove their worth but probably not in the form and 

certainly not as soon as the media say. This paper draws on the comments and writings of these 

researchers to identify over a dozen problems in SDC development that have not yet been solved. 

The problems include not just technical issues such as the adequacy of machine learning, 

software validation, hardware reliability, cybersecurity, and the lack of adequate testing, but also 

non-technical issues such as public fears about SDCs’ lack of safety and questions of insurance 

and liability. The paper concludes by suggesting a future consisting of slow, incremental 

improvements in SDCs over many years. The radical changes in society that have been predicted 

in the media may never be achieved, but nevertheless SDCs may result in the saving of lives of 

many people who would have otherwise perished in automobile accidents. 

 

Acronyms 
 

ADAS   Advanced Driver Assistance System 

ADS   Automated Driving System  

AI  Artificial Intelligence 

GMO  Genetically Modified Organism 

GPS  Global Positioning System 

ML  Machine Learning 

NASA  National Aeronautics and Space Administration 

NHTSA National Highway Traffic Safety Administration 

NTSB  National Transportation Safety Board 

ODD  Operational Design Domain 

SAE  Society of Automotive Engineers 

SDC  Self-Driving Cars 
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Self-Driving Cars: What Can We 

Realistically Expect? 

 

 

 
Figure 1.  A self-driving car on the road in Mountain View, California 

 

1.  Introduction 

 

We’re still very much in the early days of making self-driving cars a reality.  Those who 

think fully self-driving vehicles will be ubiquitous on city streets months from now or 

even in a few years are not well connected to the state of the art or committed to the safe 

deployment of the technology.  For those of us who have been working on the technology 

for a long time, we’re going to tell you the issue is still really hard, as the systems are as 

complex as ever. – Bryan Salesky, CEO of artificial intelligence startup Argo AI [1] 

 

Figure 1 shows an iconic image of a “self-driving car” (SDC).  The notion of an SDC has caught 

the public’s fancy, and popular media are full of articles describing how our lives will be 

dramatically changed by the widespread use of SDCs.  However, many of the more thoughtful 

people working in SDC development have been bothered by the excessive media attention and 

the accompanying gross exaggerations of future SDC capabilities.  These researchers fear that 
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the entire field may be discredited when the public realizes SDCs cannot live up to the extreme 

claims that have been made.  Gill Pratt, Executive Technical Advisor and CEO of the Toyota 

Research Institute, expressed this concern succinctly: 

 

I think there’s a general desire from the technical people in this field to have both the 

press and particularly the public better educated about what’s really going on.  It’s very 

easy to get misunderstandings based on words or phrases like “full autonomy.”  What 

does full actually mean?  This actually matters a lot: The idea that only the chauffeur 

mode of autonomy, where the car drives for you, is the only way to make the car safer 

and to save lives, that’s just false [2]. 

 

The purpose of the present paper is to acquaint readers with what prominent researchers in the 

field think about the prospects of SDCs.  Almost all of these researchers believe that SDCs will 

eventually prove their worth but probably not in the form—and certainly not in the timeframe—

the media have predicted.   
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2.  The Promise of Self-Driving Cars 
 

But, and this may sound a little complacent, I almost view [a self-driving car] as a solved 

problem.  We know exactly what to do, and we'll solve it in a few years. – Elon Musk, 

founder of Tesla, Inc. [3] 

 

Mechanical engineering professor and artificial intelligence researcher John Leonard told 

an audience … at Harvard University that Tesla Motors founder Elon Musk’s declaration 

of self-driving cars as “a solved problem” was more than a little optimistic.  “Just very 

respectfully, I disagree,” Leonard said. [4] 

 

In recent years, various companies have made huge investment bets on the potential for SDCs.  

For example, several years ago in a court filing, Google inadvertently revealed that it had spent 

$1.1 billion on SDC research and development between 2009 and 2015 [5].  In March 2016, 

General Motors spent a billion dollars to buy a company involved in developing SDC 

technology, and in February 2017, Ford announced plans to spend a billion dollars to set up a 

joint venture with Argo AI, a startup run by two prominent engineers having extensive 

experience in artificial intelligence and robotics [6].  An even larger acquisition was Intel’s 

$15.3-billion purchase of Mobileye, an Israeli company developing camera-based guidance for 

SDC navigation.  In early 2015 the ride-sharing company Uber hired forty researchers away 

from Carnegie Mellon’s National Robotics Engineering Center—which had somewhat more than 

one hundred technical personnel before the raid—by offering them hundreds of thousands of 

dollars in bonuses and a doubling of salaries to work on SDC technology [7].  Clearly these 

companies have concluded that SDCs will play a major part in the future of transportation.  But 

they are not alone.  Other large SDC projects are underway at Daimler-Bosch, Volkswagen, 

BMW-Intel-FCA, Aptiv, Renault-Nissan Alliance, Volvo-Autoliv-Ericsson-Zenuity, PSA, and 

dozens of other firms both large and small.     

 

Just what is it about the future of SDCs that causes companies to invest billions of dollars in 

research and development?  One obvious reason is the fear of being left behind.  Ride-sharing 

companies that use robotaxis would have no drivers to pay and thus could charge much lower 

prices than companies with drivers.  Long-distance trucking companies could cut costs 

dramatically if self-driving trucks were developed.  Auto makers producing SDCs might 

dominate the market for personal cars if SDCs turn out to be as popular as many people forecast.   

 

Thus many companies see SDCs as a potential threat to their survival.  To be fair, these 

companies—and many other observers—also see much promise in improved safety.  In 2016, 

about 37,000 people in the US died in traffic accidents, and the most recent data about accident 

fatalities worldwide indicates that in 2013 about 1.2 million people perished.  The harm to US 

society from the loss of life and injury in traffic accidents is over half a trillion dollars annually.  

http://www.computerworld.com/article/2899497/elon-musk-says-driving-may-someday-be-illegal.html
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Ninety-four percent of US crashes involve human error, and about two out of three people will 

be involved at some time in their life in an accident in which a driver had been drinking alcohol.  

By reducing human error and the effect of alcohol on driving, SDCs have the potential to save 

thousands of lives and reduce the economic loss from traffic accidents [8]. 

 

People have pointed out other potential advantages of SDCs.  For example, time that people used 

to consume in operating their own cars could instead be devoted to other pursuits such as 

reading, writing, or watching videos.  Mobility would greatly improve or become available to 

groups in society who had previously lacked it—for example, persons with disabilities or illness, 

children, the elderly, the poor, and persons who for various reasons never were able to obtain a 

driver’s license.  Because accidents would decrease, insurance costs would decrease.  

Automating long-distance trucking would decrease costs significantly not only because drivers 

would not have to be paid but also because trucks could be operated around the clock.  The cost 

of delivering everything from pizzas to packages would drop dramatically, and these lower costs 

could stimulate development of new businesses that were previously limited by the cost of 

getting their products to the consumer.  Cars would be designed to accelerate and brake 

efficiently, and thus fuel would be saved.  Speed limits could be raised because self-driving cars 

could be operated safely at higher speeds.  Thus travel times would be decreased.   

 

Some commentators have looked far into the future to imagine a world in which all vehicles 

were driverless and driving by human beings would be made illegal (because human drivers 

would be too dangerous compared to SDCs).  Transportation by automobile would be treated as 

a service provided by a transportation utility company, and people would have no more need to 

have their own car than people today need their own electricity generator. 

 

Retail companies such as car dealers, car washes, auto parts stores, and gas stations would 

disappear, as would companies offering individual car insurance and car financing.  Parking lots 

and structures would be eliminated because the SDCs would be in constant use carrying different 

customers or delivering packages throughout the day.  The price of houses would go down 

because garages would be eliminated.  Traffic police would not be needed, nor would traffic 

signals and signs.  Because no one would have a driver’s license, some other means of 

identification would need to be developed.  People would drink more alcohol in restaurants and 

bars because they no longer would need to worry about driving home.  Because vehicle accidents 

would never occur, much of the vehicle structure intended to protect the occupants during a 

collision could be eliminated.  Cars would then carry less weight and become more fuel efficient. 
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3.  Overview of Current Self-Driving Car Technology 
 

Perhaps through this essay I will get the bee out of my bonnet that fully driverless cars 

are a lot further off than many techies, much of the press, and even many auto executives 

seem to think.  They will get here and human driving will probably disappear in the 

lifetimes of many people reading this, but it will not all happen in the blink of an eye as 

many expect.  Lots of details must be worked out. – Rodney Brooks, Panasonic Professor 

of Robotics (emeritus) at MIT and Chairman and CTO of Rethink Robotics [9] 

 

 3.1 Drivers’ Questions 

To operate a car, human drivers must answer four questions: 

 

 Where am I?  (perceiving the surrounding environment)  

 What’s around me?  (processing that information) 

 What will happen next?  (predicting how others in that environment will behave)  

 What should I do?  (making driving decisions based on that information) [7, p. 8] 

 

SDCs must answer the same questions, but while human drivers rely on sight, intelligence, and 

experience, (most) SDCs rely on route maps, sensors, and computer software.  An enormous 

amount of hard work, creativity and imagination have gone into developing maps, sensors, and 

software, but—as will become evident—serious challenges remain. 

 

 3.2 Route Maps 

In comparison with the maps presently available from Google, Apple, or Garmin for use in 

human-driven vehicles, route maps are much more detailed, showing traffic signals, road signs, 

curbs (including height), curb-cuts, driveways, road striping, type of road surface, crosswalks, 

fire hydrants—in general anything that does not move and which is relevant to driving.  Route 

maps must be precise, accurate and almost constantly updated.  Some SDC developers propose 

daily, if not hourly updates [10].  Failure of a map to show that a road has been closed or 

resurfaced, curbs removed, or a construction zone created could completely baffle an SDC.  

Updates come in part from individual SDCs encountering something new, such as a closed road, 

and then notifying other SDCs through an information center maintained by the company 

responsible for the SDCs.   

 

Having a route map greatly decreases the load on the SDC’s computer.  As an SDC moves along 

a road, its sensors produce an enormous amount of data by scanning the environment and 

recording everything in view.  Without a route map, the computer would have to analyze all this 

data and try to recognize all the objects the data represents.  But with a route map, the computer 

already knows what many of the objects are without having to perform any analysis.  The 

computer can then devote its resources to analyzing only the data coming from sources not on 
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the map.  These sources must then represent either objects that can move, such as other cars or 

pedestrians, or fixed objects that are not on the route map because they have only recently 

appeared, such as new construction sites. 

 

Many of the companies involved in SDC development send out their own fleets to create maps.  

Waymo—formerly the Google self-driving car project— has described the process it uses: 

 

Before we drive in a new city or new part of town, we build a detailed picture of what’s 

around us using the sensors on our self-driving car.  As we drive around town, our lasers 

send out pulses of light that help us paint a three-dimensional portrait of the world.  

We’re able to tell the distance and dimensions of road features based on the amount of 

time it takes for the laser beam to bounce back to our sensors.  Our mapping team then 

turns this into useful information for our cars by categorizing interesting features on the 

road, such as driveways, fire hydrants, and intersections [11].   

 

Similarly, GM says its SDCs will drive "only on roads for which we have developed high-

definition map data" [12]. 

 

As is probably obvious from Waymo’s description, making such extremely detailed maps is 

expensive.  The mapping team consists of highly trained engineers—by no means minimum-

wage employees.  Sometimes two, three, or even four passes must be made through a 

problematic intersection, and the data from the various passes is edited and merged into a single 

map.  Once maps have been created for a region, they must be maintained—an additional 

expense.  However, this expense is reduced by SDCs reporting map discrepancies back to a 

control center, as the SDCs drive passengers around.  The Chinese search-engine giant Baidu 

believes that making maps for SDCs will become a bigger business than web search [13].   

 

Waymo states that the total miles its SDCs have traveled are well into the millions.  But it’s 

important to realize that these millions of miles were driven over a small number of routes that 

had been thoroughly mapped in advance.  Many of the routes lie in the San Francisco Bay area.   

 

The US has approximately 2.6 million miles of paved roads and 1.4 million miles of unpaved 

roads [14].  Mapping and updating the maps of all of these roads would be expensive.  It seems 

reasonable to suppose that only those roads will be mapped that are sufficiently well-traveled to 

justify the cost.  As a result, American SDCs that rely on route maps will be unable to drive on 

many US roads.  Off-road travel, such as on a large farm or ranch, or in a field used for parking 

for an outdoor concert, will be off-limits to SDCs because of the lack of maps. 

The costs and restrictions that the use of high-definition route maps imposes on SDCs have led 

many developers to seek alternatives.  Apple has obtained a patent on a system that would use 

sensors on SDCs to “continuously create a new virtual model of the world that the car is 
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navigating through, drawing just from those sensors rather than using any external or pre-

existing data source [ for example, a route map] as a reference” [15].  Researchers at MIT have 

tested a system that “consults a very minimalist map and then uses its sensors to see its way to a 

point up ahead, a ‘waypoint’ the system chooses for being in the general direction of the ultimate 

goal” [16].  None of these alternatives are as well developed as high-definition route maps.   

3.3 Sensors 

All SDCS have one or more types of sensors: ultrasonic, sound (microphones), radar, imaging 

(cameras), and LiDARs.   

  

Ultrasonic sensors locate objects by emitting high-frequency sound waves and then analyzing the 

reflected waves.  The sensors can only be used to detect obstacles close to the vehicle, such as 

people, other vehicles, or barriers, and only at very low speeds.  Some self-parking systems 

employ ultrasonic sensors. 

 

Microphones are needed in SDCs to detect sirens of emergency vehicles so that the SDCs can 

take appropriate action, such as pulling over to the side of the road as the emergency vehicle 

approaches.  Waymo’s microphone system can determine not only the siren’s distance but also 

its direction. 

 

Radar sensors are familiar from applications in meteorology and marine and aircraft navigation.  

Radar works by emitting electromagnetic waves and then analyzing the waves reflected from an 

object.  Radar can determine both the distance of an object as well as its speed and is effective 

day or night, in rain, fog, and snow, but does not provide enough resolution for easy 

identification of an object such as a human hand used in a gesture [7]. 

 

Cameras, unlike radar and sound sensors, are passive sensors.  They depend on ambient light 

sources to produce reflections from which information can be deduced about an object.  This 

works well when the ambient light is well-suited for photography but poorly when the light is 

dim or overwhelming as in glare from a setting sun.  If a good image of an object can be 

produced by a camera, then current state-of-the-art machine-vision systems can recognize it 

reliably—for example, categorize it as a pedestrian, traffic sign, vehicle, etc.  [17].  In contrast 

with the other types of sensors, cameras can detect colors and fonts, which is useful for 

determining traffic signals and interpreting signs.  Stereo cameras, which have the ability to 

capture three-dimensional images and are used in some SDCs, can determine lane width and 

distance to an object.   

 

A LiDAR—pronounced “lie-dar” and also written LIDAR, Lidar, and LADAR—is a device 

often mounted on the roof of the SDC that emits a large number of laser light pulses per second 

and captures the reflected pulses with a detector.  By continually scanning the surroundings and 

determining the length of time for the reflected pulses to return to the detector, a LiDAR system 
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builds a high-resolution 3-D representation of objects surrounding the SDC.  LiDARs work 

equally well in good or poor lighting conditions, but they cannot distinguish colors and are thus 

unable to determine the color of a traffic signal.  Waymo has developed its own LiDARs—short 

range, high-resolution mid-range, and a long-range device that can detect objects at almost 300 

yards.  These devices represent a significant advance in the technology, and Waymo claims they 

cost only a small fraction of the price of LiDARs sold by other manufacturers [7, p.14].  

Interestingly Tesla does not use LiDARs, preferring instead to rely exclusively on cameras and 

image-recognition software [18]. 

 

 3.4 Software 

Maps, sensors, and software provide answers to the driver’s questions, “Where am I?” and 

“What’s around me?”  The various sensors feed information to the onboard computer where it is 

integrated through a process called, “sensor fusion.”  For example, data from the radar and 

LiDAR sensors both may indicate the presence of a vehicle immediately ahead of the SDC.  The 

sensor fusion process would then report only one piece of information (rather than two)—the 

presence of a single vehicle—to the SDC’s decision-making software. 

 

Sensor fusion is complex.  The fusion software must deal with input from many sensors—GM’s 

Cruise AV has forty-two sensors (five LiDARs, sixteen cameras, and twenty-one radars)—and 

must decide which are providing reliable data and which are not because of some problem such 

as malfunctioning electronics or being blocked by snow, dust, or other vehicles [12]. 

 

Bryan Salesky, the CEO of Argo AI, has summarized the current state of sensor technology and 

the fusion process: 

 

Sensors still have a long way to go.  We use LiDAR sensors, which work well in poor 

lighting conditions, to grab the three-dimensional geometry of the world around the car, 

but LiDAR doesn’t provide color or texture, so we use cameras for that.  Yet cameras are 

challenged in poor lighting, and tend to struggle to provide enough focus and resolution 

at all desired ranges of operation.  In contrast, radar, while possessing relatively low 

resolution, is able to directly detect the velocity of road users even at long distances. 

 

That’s why we still have so many sensors mounted on the car — the strengths of one 

complement the weaknesses of another.  Individual sensors don’t fully reproduce what 

they capture, so the computer has to combine the inputs from multiple sensors, and then 

sort out the errors and inconsistencies.  Combining all of this into one comprehensive and 

robust picture of the world for the computer to process is incredibly difficult [1]. 

 

Data from sensor fusion is next combined with high-definition map data to “localize” (locate the 

position on the map—that is, answer the question, “Where am I?”) the vehicle.  Many different 
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methods are used in the localization procedure.  This redundancy provides error checking and 

quality control and means that even if the localization information from one system, such as 

radar, becomes unavailable, the vehicle can use localization information generated by other 

sources, such as from LiDAR data [12].  Waymo reports that it can locate an SDC’s position to 

within 10 cm [19].  In comparison, GPS locates a car to within 1-2 m, which means that the GPS 

user could not distinguish between the car being on the street or on the sidewalk [20]. 

 

Besides identifying the permanent objects in the surroundings, the software uses the route map 

and sensor data to identify movable (or changeable) objects—other vehicles, pedestrians, 

cyclists, traffic signals, warning flares near an accident, and so on—in the surroundings, thus 

completing the answer to the driver’s question, “What’s around me?”  

 

The next question—“What will happen next?”—is answered by making estimates of where the 

surrounding movable objects will be in the next few seconds.  The location, heading, velocity, 

acceleration and capacity for change in these properties are all used to produce estimates for each 

object individually.  Given these estimates, the software now answers the final question, “What 

should I do?” by producing commands for the SDC’s steering, braking, and accelerator that will 

move the SDC to a new location without colliding with an object, without subjecting passengers 

to uncomfortable or frightening motions, and without surprising other drivers by an unexpected 

maneuver. 

 

This brief description of SDC software hides many complexities, especially the use of artificial 

intelligence (AI), which will be discussed in a later section. 
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4.  Operational Design Domain—Limitations Imposed by Current 

Technology 
 

Technology developers are coming to appreciate that the last 1 percent is harder than the 

first 99 percent- …Compared to the last 1 percent, the first 99 percent is a walk in the 

park. – Karl Iagnemma, CEO of Boston-based self-driving car company NuTonomy [21] 

 

This is why I often say that we’ve done the first 99 percent of autonomous driving but the 

next 99 percent is going to be much harder.  – Commenter Bob Frankston on Rodney 

Brooks’ blog, “Robots, AI, and other stuff” [22] 

 

The SDCs currently considered to be the most advanced depend on route maps for navigation.  

Thus where there are no route maps, there are no SDCs.  Similarly, SDCs depend on sensors; 

when sensors are unable to provide data, SDCs cannot operate.  This state of affairs has led the 

National Highway Traffic Safety Administration (NHTSA) to define each SDC’s capability 

limits or boundaries through its “Operational Design Domain (ODD).” 

 

The Operational Design Domain refers to the environment, including location, weather 

and speeds, in which the self-driving vehicle is designed to operate [12, 23]. 

 

At a minimum the ODD includes the following information: 

 

 Roadway types (interstate, local, campus, etc.) on which the SDC is intended to 

operate safely 

 Geographic area (city, mountain, desert, etc.);  

 Speed range 

 Environmental conditions in which the SDC will operate (weather, 

daytime/nighttime, etc.)  

 Other domain constraints. 

 

GM is describing the ODD for its SDC when the GM Safety Report says, “our self-driving 

vehicles will drive only in known geo-fenced boundaries [a virtual perimeter for a real-world 

geographic area], and only on roads for which we have developed high-definition map data.  

They will also drive only under known operational conditions and constraints that apply to the 

entire fleet” [12]. 
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5.  Levels of Automation 
 

Level 5 autonomy—when a car can drive completely autonomously in any traffic or 

weather condition—is a wonderful goal but none of us in the automobile or IT industries 

are close to achieving true Level 5 autonomy. – Gill Pratt, Executive Technical Advisor 

and CEO of Toyota Research Institute [2] 

 

  5.1 SAE Standard J3016 

As a convenience, thus far in this paper the term “self-driving cars” (SDC) has been used as a 

blanket term, as if all SDCs were the same.  In reality, the SDCs designed by the various 

competing developers differ greatly in degree of automation.  This ambiguity has led to 

confusing and misleading claims in popular accounts about what constitutes a self-driving car.  

Recognizing the need to clarify the discussion, the Society of Automotive Engineers 

International (SAE) has formulated Standard J3016, the 2018 version of which is summarized in 

Table 1 on the next page [24].
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Table 1.  2018 version of SAE J3016 automated driving level definitions.  SAE INTERNATIONAL. 
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Comments on Levels 3, 4, and 5: 

 

 In Level 3, a human driver sits behind the steering wheel while the automated driving 

system (ADS) handles all driving tasks—until a driving situation arises that the ADS 

cannot handle.  The ADS then hands off control to the human driver, who is expected to 

respond promptly when alerted.   

 In Level 4, the ADS handles all driving tasks, as long as the car remains in its ODD.  If 

the ODD is violated—by for example the occurrence of heavy snowfall that blinds the 

sensors—the ADS is programmed to guide the car to a minimal risk condition, a process 

referred to as “fallback.”  A typical fallback might consist of bringing the vehicle to a 

safe stop, preferably outside of an active lane of traffic.  Human intervention of some 

kind will then be necessary to drive the car further.   

 In Level 5, the ADS handles all situations. 

 Many of the predictions about SDCs described in section 2 of the present paper—

especially the ones involving extreme changes to transportation and city design, are 

implicitly based on the assumption that all SDCs are Level 5.  A Level 3 vehicle would 

not satisfy the implicit requirements underlying the predictions.  For example, a Level 3 

vehicle must have a back-up driver to hand off control to, but if the cargo consists of 

children, visually impaired or ill persons, or a pizza being delivered, no back-up driver 

would be available.  Similarly, a Level 4 vehicle would not be sufficiently robust to fulfill 

many of the more extreme predictions.  If the ODD of a Level 4 vehicle is violated, the 

car would have to retreat to a fallback position and wait for help.  Visions of a second-

grader confined alone in a stranded SDC will convince most parents to stick with 

traditional cars for getting children to their piano lessons. 

 

Level 4 vehicles have actually been around for many years: automated vehicles of various shapes 

and sizes have been used at airports to transport people from one terminal to another.  These 

vehicles qualify as Level 4 because they operate in their (highly restricted) ODDs without human 

intervention.  The challenge of developing SDCs can be viewed as that of expanding their 

ODDs. 

 

5.2 The Handoff Problem and Skipping Level 3 

The “handoff” process occurring in Level 3 has proven to be more difficult than anticipated and 

is now known as the “handoff problem.”  As Volvo discovered, “A car with any level of 

autonomy that relies upon a human to save the day in an emergency poses almost 

insurmountable engineering, design, and safety challenges, simply because humans are for the 

most part horrible backups.  They are inattentive, easily distracted, and slow to respond” [25].  A 

2015 regulatory study reported that some drivers required seventeen seconds to retake control of 

a vehicle [26].   
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To solve this inattention problem, the car must have interior cameras and sensors to monitor the 

driver’s head position, gaze direction, and hands-on-wheel contact.  Then the vehicle must alert 

the driver by sounding an alarm, flashing warning lights or vibrating the steering wheel (haptic 

feedback).  But monitoring the potential driver’s physical state introduces a whole new set of 

difficult sensor and software problems, in addition to the problems related to the environment 

exterior to the vehicle.  After considering the difficulties of the handoff problem, many 

companies, including GM [12], Nissan [27], Volvo [25], and Waymo [7], have decided to skip 

developing a Level 3 vehicle but instead go directly to Level 4.   

 

5.3 Disengagements, Fallback and Teleoperation 

In road tests of SDCs, “disengagement” refers to a situation that baffles the ADS, and as a result, 

the ADS has to disengage from controlling the car and instead has to seek human intervention.  

Waymo, one of the most advanced of the SDC developers, recently reported an average of 5,596 

miles between disengagements while the GM Cruise average disengagement distance was 1,254 

miles.  (The large difference in disengagement distances may reflect differences in chosen 

driving environments—more disengagements will arise in city driving than in interstate highway 

driving.) [28]   

 

What solution to the disengagement problem do these developers, staff at the National Highway 

Traffic Safety Administration, and others propose?  First, Level 4 SDCs should be programmed 

to transition to fallback without human intervention.  Second, once in fallback the SDC, instead 

of handing off control to a passenger, contacts a remote teleoperation center.   

 

Nissan has been an early promoter of teleoperation and has built a system based on software used 

by NASA for Mars Rovers [27].  Nissan’s teleoperators (human beings) do not provide a backup 

in the event of an emergency.  Emergencies happen too quickly for teleoperators to intervene.  

Instead the teleoperators go into action when the center receives a call from an SDC when its 

control system does not know what to do.   

 

When the call arrives, a teleoperator queries the SDC’s sensors to find out what the situation is, 

and then sends a batch of driving instructions that the SDC executes on its own, after verifying 

through its sensors that the driving maneuver would be safe. (Most teleoperators do not drive the 

SDC directly because of latency issues, but a company called Phantom Auto claims to have 

solved this problem [29].)  For instance, the instructions might direct the SDC to violate its usual 

rules and cross into the opposing traffic lane and proceed through a red light so as to allow an 

ambulance to pass.   

The governor of Arizona has issued an executive order stating that teleoperators must be used if 

no back-up driver will be aboard the vehicle.  Thus Waymo, which in late 2018 introduced 
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robotaxis in Chandler, Arizona, with back-up drivers in the vehicle will eventually use 

teleoperators for these vehicles if the back-up drivers are removed.  [30, 145].   

Teleoperation centers appear to be one way to address the fallback problem, but unfortunately, as 

Toyota’s Gill Pratt has remarked, teleoperations centers have problems of their own: 

 

First of all, those things assume the Internet is working, there are no hackers, there’s no 

natural disaster.  But most of all, it’s the same issue we discussed earlier [the handoff 

problem], that you assume a person at a call center can suddenly wake up and say, 

“Okay, trouble,” and handle the situation.  People are very bad at that.  We’re very bad at 

suddenly being surprised and needing to orient ourselves and coming up with a correct 

response.  So we’re not saying that’s impossible, but we’re saying it may be very 

difficult, for the reasons that we’ve outlined [2]. 

 

Nissan estimated that on average, a human teleoperator would take thirty seconds to develop 

“situational awareness” and convert that awareness into a set of driving instructions [27].  Thirty 

seconds is a long time for human-driven vehicles caught behind the SDC to wait; there may be 

public backlash against SDCs if fallback delays occur frequently.   

 

An additional problem with relying on teleoperators is that the company managing the SDCs will 

have to recruit, train, monitor, and pay large numbers of people to staff the operation.  Thus the 

expected savings from not having to pay a driver of a robotaxi or robo-delivery vehicle would be 

less than previously anticipated.   

 

Given the characteristics of teleoperated vehicles, it is a legitimate question whether vehicles 

dependent on teleoperators can truly be called “driverless” at all.  The driver is still present—just 

not in the vehicle. 

 

 5.4 Current Level 4 SDCs 

In a January 2018 Senate hearing, Tim Kentley-Klay, CEO of the Zoox robotics company, 

admitted that teleoperation centers would be needed “both to deal with vehicles if they have an 

issue, but also to deal with customers if they need help” [29].  But requiring a teleoperations 

center places a significant restriction on SDCs.  Their range will be limited to areas covered by 

adequate communications networks.  By way of comparison, even present-day cellphone service 

has gaps in coverage.  A teleoperations network must be much more reliable than that. 

 

Waymo and Ford claim that their vehicles can operate safely without constant communication 

with an operations center [7, 31].  Thus their claim to have Level 4 vehicles depends on a 

judgment call. How many miles between disengagements must a vehicle average before it can be 

considered to perform (almost) all driving tasks in its ODD?  American drivers average about 
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12,000 miles per year.  Waymo’s most recent average of 5,596 miles between disengagements 

would translate into two or three times per year when the vehicle would have to find a place to 

pull over and stop.  Some of these places might be uncomfortable or even dangerous, for 

example, blocking traffic in a right-turn-only lane of a busy intersection.  Probably few drivers 

would be pleased with this performance and few would be willing to concede that the vehicle can 

perform nearly all driving tasks in its ODD.  The number of miles between disengagements must 

be significantly increased before a (close approximation) to Level 4 can be claimed. 

 

How close is the SDC industry to developing a Level 5 vehicle?  In a January 2017 Wired 

Magazine article, Nissan's R&D chief Maarten Sierhuis is described as pointing to a road 

construction site and saying: 

 

There is so much cognition that you need here.  The driver—or the car—has to interpret 

the placement of the cones and the behavior of the human worker to understand that in 

this case, it's okay to drive through a red light on the wrong side of the road.  This is not 

gonna happen in the next five to ten years [27]. 

 

The Wired writer goes on to say: 

 

It's a stunning admission, in its way: Nissan's R&D chief believes the truly driverless 

car—something many carmakers and tech giants have promised to deliver within five 

years or fewer—is an unreachable short-term goal.  Reality: one; robots: zero.  Even a 

system that could handle 99 percent of driving situations will cause trouble for the 

company trying to promote, and make money off, the technology.  "We will always need 

the human in the loop," Sierhuis says [27]. 

 

In the SAE definitions, Level 5 is defined as “Full Driving Automation.”  Level 4 is “Conditional 

Driving Automation” and is “full automation” only while confined to its ODD.  Yet popular 

media and company press releases persist in using phrases such as “fully automated” to describe 

a particular SDC, when in reality the SDC exhibits only conditional automation.   

 

  



 

17 
 

6.  Concerns Related to the Widespread Use of Self-Driving Cars  

 

I would actually welcome a correction in public opinion about what AI can and cannot 

do.  This has happened to me multiple times, where I would listen to a CEO on stage 

make an announcement about what their company is doing with AI, and then twenty 

minutes later I'd talk to one of their engineers, and they'd say, “No, we're not doing that, 

and we have no idea how to do it.”  I think it still takes judgment to know what is and 

what isn't possible with AI, and when the C-suite does not yet have that judgment it's 

possible for companies to make promises very publicly that are just not feasible.  Frankly, 

we see some of this in the self-driving space.  Multiple auto [original equipment 

manufacturer] CEOs have promised self-driving car roadmaps that their own engineers 

think are unrealistic.  I feel [CEOs are] being sincere but just not really understanding 

what can be done in a certain timeframe. – Andrew Ng, former chief scientist of Chinese 

tech conglomerate Baidu and co-founder of Google Brain, the company’s deep-learning 

research team [32] 

 

6.1 Edge Cases 

In the SDC industry, the term “edge case” is used to describe a situation in driving where the 

software controlling an SDC either makes an inappropriate response or is unable to direct the 

vehicle’s action at all.  Both Waymo and GM state that their software can handle the well-known 

edge cases involving protected left turns and recognizing and adapting to construction zones and 

traffic cones [7, 12].  But many other edge cases are known, and many more will be discovered 

as experience in SDC driving is gained.   

 

In his blog, Rodney Brooks, Emeritus Professor of Robotics at MIT, says, “I want to talk about a 

number of edge cases, which I think will cause it to be a very long time before we have Level 4 

or Level 5 self-driving cars wandering our streets, especially without a human in them, and even 

then there are going to be lots of problems” [9].  He describes several edge cases that seem 

particularly knotty for AI to handle: 

How are the police supposed to interact with a Carempty [a car with no passengers]? 

While we have both driverful and driverless cars on our roads I think the police are going 

to assume that as with driverful cars they can interact with them by waving them through 

an intersection perhaps through a red light, stopping them with a hand signal at a green 

light, or just to allow someone to cross the road. 

But besides being able to understand what an external human hand signaling them is 

trying to convey, autonomous cars probably should try to certify in some sense whether 

the person that is giving them those signals is supposed to be doing so with authority, 
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with politeness, or with malice.  Certainly police should be obeyed, and police should 

expect that they will be.  So the car needs to recognize when someone is a police officer, 

no matter what additional weather gear they might be wearing.  Likewise they should 

recognize and obey school crossing monitors.  And road construction workers.  And 

pedestrians giving them a break and letting them pass ahead of them.  But should they 

obey all humans at all times?  … 

Sometimes a police officer might direct a car to do something otherwise considered 

illegal, like drive up on to a sidewalk to get around some road obstacle.  In that case 

a Carempty probably should do it.  But if it is just the delivery driver whose truck is 

blocking the road wanting to get the Carempty to stop tooting at them, then probably the 

car should not obey, as then it could be in trouble with the actual police.  That is a lot of 

situational awareness for a car to have. 

Things get more complicated when it is the police and the car is doing something wrong, 

or there is an extraordinary circumstance which the car has no way of understanding. 

In the previous section we just established that autonomous cars will sometimes need to 

break the law.  So police might need to interact with law breaking autonomous cars … 

If an autonomous car fails to see a temporary local speed sign and gets caught in a speed 

trap, how is it to be pulled over?  Does it need to understand flashing blue lights and a 

siren, and does it do the pull to the side in a way that we have all done, only to be 

relieved when we realize that we were not the actual target? 

And what if a whole bunch of Carempties have accumulated at [an unusual situation that 

baffles the cars’ control software], and a police officer is dispatched to clear them out?  

For driverful cars a police officer might give a series of instructions and point out in just 

a few seconds who goes first, who goes second, third, etc.  That is a subtle elongated set 

of gestures that I am pretty sure no deep learning network has any hope at the moment of 

interpreting, of fully understanding the range of possibilities that a police officer might 

choose to use. 

Or will it be the case that the police need to learn a whole new gesture language to deal 

with driverless cars?  And will all makes [of cars] all understand the same language? 

Or will we first need to develop a communication system that all police officers will have 

access to and which all autonomous cars will understand so that police can interact with 

autonomous cars?  Who will pay for the training?  How long will that take, and what sort 

of legislation (in how many jurisdictions) will be required? 
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Aside from edge cases, the sheer number of traffic scenarios the software must handle is large 

and growing, as SDCs are driven more and more.  In Waymo’s input comments to NHTSA about 

NHTSA’s proposed Development of Automated Safety Technology Guidelines, Waymo listed 

dozens of scenarios that it has analyzed “to help ensure our vehicles are capable of operating 

safely in the reasonably foreseeable situations that could present a safety hazard” [33].  The 

scenarios are listed in Appendix A. 

 

 6.2 Machine Learning and Deep Learning 

Machine learning (ML) is a branch of AI involving a computer system that has the ability to 

teach itself to solve a problem by identifying a pattern in input data rather than by following 

programmed steps to obtain a solution.  An example would be a facial recognition system that is 

trained to recognize photos of a particular person, say person X.  The system would be given as 

input a large “training” dataset consisting of photos of various people (including X) in various 

clothes, postures, and lighting.  The system would then identify a pattern (features of X’s 

appearance) in the photos.  If the system is now given a different set of photos including a new 

photo of X, it would be able to use the pattern to select X’s photo from the set. 

 

Deep learning is a particular type of ML that—thanks to recent improvements in computer 

power, algorithms, and the development of large training datasets—is currently one of the most 

effective ML systems available.  Deep learning is used in Google Search, Google Translate, the 

Facebook News Feed, conversational speech-to-text algorithms, medical imaging, 

pharmaceutical drug discovery, and cancer diagnosis—to name just a few applications [34].  The 

psychologist Steven Pinker has written a general but informative description, reproduced in 

Appendix B, of how the “magic” of deep learning works. 

 

In SDCs, deep learning is most commonly used to examine data collected by the vehicle’s 

sensors and identify traffic-related objects in the surrounding environment.  This information is 

given as input to the SDC’s control system, where driving decisions are then made by pre-

programmed rules.  Some other companies use deep learning in a different way.  Rather than 

relying on pre-programmed rules to make driving decisions, these companies use “deep learning 

to devise the vehicle’s own decision-making capability based on the scenarios it encounters” 

[35].   

 

Even though deep learning has proven highly successful in various applications and is currently 

employed in SDCs, concerns have arisen as to whether deep learning will be adequate for the 

task as SDCs move from development to widespread deployment.  One concern is that the 

training datasets may not be sufficiently large.  A classic example from an ML algorithm (other 

than deep learning) shows the difficulty all MLs face: 
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In a famous project, researchers trained [an ML system] to distinguish between wolves 

and dogs.  The model achieved an impressive accuracy.  However, the researchers 

eventually found out that the [system] learned to detect snow on images since most 

training images of wolves contained snow in the background.  That’s not the conclusion 

that the [system] should draw [36]. 

Clearly the training dataset was too narrow.  Many more images of wolves without snow should 

have been included.   

Thus the first concern about using deep learning in SDCs is that the training dataset may be 

inadequate.  The dataset must encompass the wide variety of driving-related objects encountered 

as a vehicle moves in an urban environment, and it must include edge cases, which by their 

nature occur infrequently.   

According to information publicly available, Waymo has driven SDCs more miles than any other 

developer, and as a result, Waymo probably has the largest training datasets.  Waymo and others 

supplement their datasets by running computer simulations (numbering in the billions!), but the 

simulations must still be based on collecting an enormous amount of actual field images.  The 

question is, then, are the existing training datasets used with deep learning sufficient for 

developing a safe SDC?  Rand Corporation researchers Nidhi Kalra and David Groves are not 

optimistic: 

There is little reason to believe that improvement in [SDC] safety performance will be 

fast and can occur without widespread deployment, given the years already dedicated to 

[SDC] development and given that real-world driving is key to improving the technology.  

Indeed, there is good reason to believe that reaching significant safety improvements may 

take a long time and may be difficult prior to deployment [37].   

In another Rand report, researchers Nidhi Kalra and Susan Paddock calculate that to demonstrate 

acceptable safety performance, an SDC design “would have to be driven 275 million failure-free 

miles” [38].   

A second concern about deep learning for SDC applications is that it operates by extracting 

patterns from the training dataset.  But pattern recognition is not intelligence.  In fact, a 

prominent AI researcher has stated “it would be more helpful to describe the developments of the 

past few years as having occurred in ‘computational statistics’ rather than in AI” [39].  In an 

interview, AI entrepreneur Yibiao Zhao describes the limitation of relying only on pattern 

recognition for guiding an SDC: 

 

-[D]riving involves considerably more than just pattern recognition.  Human drivers rely 

constantly on a commonsense understanding of the world.  They know that buses take 

longer to stop, for example, and can suddenly produce lots of pedestrians.  It would be 
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impossible to program a self-driving car with every possible scenario it might encounter.  

But people are able to use their commonsense understanding of the world, built up 

through lifelong experience, to act sensibly in all sorts of new situations.   

 

“Deep learning is great, and you can learn a lot from previous experience, but you can’t 

have a data set that includes the whole world … Current AI, which is mostly data-driven, 

has difficulties understanding common sense; that’s the key thing that’s missing,” said 

Zhao [40]. 

 

Figure 2 shows a traffic environment where a traffic pattern may be difficult to identify and 

commonsense is essential. 

 

 
Figure 2.  “People are able to use their commonsense understanding of the world … to act 

sensibly in all sorts of new situations.”  Yibiao Zhao.  (© Yann Forget / Wikimedia Commons.) 

   

A third concern about deep learning algorithms is that it is impossible to trace the decision-

making process the algorithm followed to achieve a final result.  The deep learning algorithm is a 

black box with input and output terminals but with no display of what happens inside the box 

when particular input is transformed into output.  An obvious danger here is the lack of a legal 

defense when an SDC is involved in a serious accident and a lawsuit ensues.  SDC developers 

would have to admit that they have no idea how the deep learning algorithm arrived at the 

particular decision that led to the accident.  What is more, even if the vehicle’s software is 

modified to prevent the type of accident that triggered the lawsuits, the developers could not 

guarantee that deep learning would not lead to accidents in other driving situations. 



 

22 
 

 

A fourth concern about relying on a pattern-matching algorithm such as deep learning is that it 

cannot generalize: 

 

[Deep learning] can’t recognize an ocelot unless it’s seen thousands of pictures of an 

ocelot—even if it’s seen pictures of housecats and jaguars, and knows ocelots are 

somewhere in between.  That process, called “generalization,” requires a different set of 

skills. 

 

For a long time, researchers thought they could improve generalization skills with the 

right algorithms, but recent research has shown that conventional deep learning is even 

worse at generalizing than we thought [41]. 

 

Thus if the algorithm is to recognize an ocelot, the training dataset has to include pictures of 

ocelots.  Similarly, if SDC deep learning is to recognize a particular edge case, the training 

dataset must include examples of that edge case.  Similar edge cases will not be sufficient. 

 

John Leonard, a mechanical engineering professor and AI researcher at MIT, expresses his 

concerns about the situation:  

  

I think that driving exposes fundamental issues in intelligence, fundamental issues in how 

the brain works.  And we might be a very long way away [from solving the problem of 

self-driving cars]. 

 

Unexpected changes to things like road surfaces can also throw off automated cars.  

Google cars, for example, use precise maps that tell them where they are at any given 

point on a journey.  But if Mother Nature drops a foot of snow, or if a road gets repaved, 

a driverless car may easily get confused [4]. 

 

Leonard thinks that Google’s SDC vehicle work is “an amazing project that might one day 

transform mobility,” but the technology today is overhyped and misunderstood. 

 

Pedro Domingos, a professor of computer science at the University of Washington, expresses 

skepticism similar to Leonard’s: “A self-driving car can drive millions of miles, but it will 

eventually encounter something new for which it has no experience … It must be that we have a 

better learning algorithm in our heads than anything we’ve come up with for machines” [42]. 

 

These observations have prompted some companies to explore alternatives to deep learning, such 

as using older AI techniques that allow logic structures to be hard-coded into an otherwise self-

directed system [41].  Yet prominent researchers such as Yann LeCun, the director of AI 
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research at Facebook, and Geoffrey Hinton, professor emeritus at the University of Toronto, 

assert that deep learning will be capable of handling all SDC tasks, and the aforementioned 

concerns are baseless [42].  It seems that building and deploying SDCs rather than theoretical 

arguments will determine who is right about the adequacy of deep learning for SDCs. 

 

 

 6.3 Software Reliability 

Aside from the question of limitations of AI, several prominent SDC specialists have questioned 

the reliability of SDC software.  Steven Shladover, a researcher at the Partners for Advanced 

Transportation Technology at the University of California, Berkeley, says: 

 

If you want to get to the level where you could put the elementary school kid into the car 

and it would take the kid to school with no parent there, or the one that's going to take a 

blind person to their medical appointment, that's many decades away.   

 

Driving in the United States is actually incredibly safe, with fatal crashes occurring once 

every roughly three million hours of driving.  Driverless vehicles will need to be even 

safer than that. 

 

Given existing software, that is amazingly difficult to do… coming up with safety-

critical, fail-safe software for completely driverless cars would require reimagining how 

software is designed.  There is no current process to efficiently develop safe software.  

For instance, when Boeing develops new airplanes, half of their costs go to checking and 

validating that the software works correctly, and that's in planes that are mostly operated 

by humans [43]. 

 

Herman Herman, Director of Carnegie Mellon’s National Robotics Engineering Center, points 

out the dramatic consequences that an SDC software error can lead to: 

 

When your web browser or your computer crashes, it’s annoying but it’s not a big deal.  

If you have six lanes of highway, there is an autonomous car driving in the middle, and 

the car decides to make a left turn—well, you can imagine what happens next.  It just 

takes one erroneous command to the steering wheel [44]. 

 

6.4 Sensor Reliability 

Because SDCs depend heavily on the information supplied by the vehicles’ sensors, sensor 

reliability is essential.  But sensor design for automotive use is challenging, as Toyota’s Gill 

Pratt has said:  
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The sensor … needs to be cheap.  It needs to be vibration resistant.  It needs to last for ten 

years or maybe twenty years and not break.  Automotive quality, which most people 

think of as being low, is actually very, very high.  I’ve worked a lot, in my DARPA work, 

with mil-spec and things like that, but automotive quality is ridiculously hard to do.  And 

so a cellphone camera is not going to work.  You’re going to need special stuff that really 

can withstand the desert and Alaska and going back and forth.  How do you deal with salt 

and rust, with the screen getting full of dust from the road…?  Making sure that’s going 

to work, all of the time, is really hard [2]. 

 

 6.5 Sensors and Extreme Weather Conditions 

Extreme weather conditions create several problems for sensors.  Figure 3 illustrates one of 

them—the vulnerability of sensors to being obstructed by snow, ice, and slush thrown by other 

vehicles. 

 

 
Figure 3.  Small clouds of snow, ice, and slush thrown up by truck tires 

 

An article in Global News entitled, “We may never see self-driving cars anywhere it snows.  

Here’s why.” discusses the problem: 

  

Winter driving is messy and can be dangerous.  It’s an old problem, solved, at least most 

of the time, with scrapers and wiper fluid.  But driving on a slushy winter road in 
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Michigan, automotive writer and consultant Sam Abuelsamid found that it has a new set 

of consequences.  … 

 

In winter, cars get covered in a film of salt, which reflects the sun, low on the horizon.  A 

few minutes on sloppy roads leaves them covered in grey, salty slush.  Trucks passing 

you on the highway leave your windshield splattered with thick icy goop, sending the 

heart racing for a moment until generous amounts of wiper fluid deals with it. 

 

The slop and mess of winter driving creates an insoluble problem for self-driving cars 

anywhere it snows regularly, Abuelsamid argues.  It doesn’t matter how cutting-edge the 

radar and sensors that self-driving cars use to see are—if they’re covered with slush, salt 

or grime they can’t see, and they can’t work if they can’t see.  [45] 

 

Installing heating elements and tiny wipers for each sensor have been suggested as ways for 

SDCs to keep sensors working, but it is far from clear that heaters and wipers will be able to 

handle the large amounts of slush that may be thrown on an SDC by neighboring vehicles. 

 

A second problem produced by extreme weather is that even when unobstructed, LiDARs are 

prevented from functioning because snow and heavy rain scatter laser light, and cameras do not 

work well in dim light.  At present, LiDARs and cameras are only fair-weather friends of SDCs, 

a situation that has led one developer specializing in sensor technology to say, “The final frontier 

for autonomy is urban driving under extreme weather conditions, and that’s going to take some 

time” [46].  Waymo has, however, reported progress in using machine learning to filter out noise 

from sensor data caused by raindrops and snowflakes [47]. 

 

A third problem related to extreme weather conditions applies to robotaxi companies. The basic 

difficulty is that if a car has no driver, who will shovel out the snow around the car and scrape 

off the ice and snow?  Figure 4 shows might happen if robotaxis are parked outside overnight 

during a heavy snowfall.  
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Figure 4.  Shoveling out after a heavy snow  

 

Cleaning the snow and ice from and around a car after a heavy winter overnight storm can take 

substantial time.  Currently, Lyft and Uber avoid this problem because their drivers double as 

snow-removers, cleaning their own vehicles of snow and ice or keeping them in their own 

garage.  But robotaxis will not have drivers, and thus a robotaxi company will have to keep a 

significant number of employees available at short notice for part-time snow removal work—

after a snow or ice storm hits the area.  This requirement will raise the cost of the robotaxi 

service in addition to being difficult for managers to administer. 

 

The alternative to keeping a large part-time staff on call for snow/ice removal is for the robotaxi 

company to keep the vehicles in parking garages when not in use.  But then one of the proposed 

advantages of using robotaxis—parking garages could be torn down and the valuable real estate 

they occupied made available for other uses—would be lost.  The company might contract with 

people owning houses with garages to park an SDC in the garage overnight.  Again, a proposed 

advantage of robotaxis—eliminating the need for garages in private residences—would be lost. 

 

6.6 Adequate Testing 

In a March 15, 2016 testimony to a US Senate committee, Mary Cummings, a professor at Duke 

University with extensive experience in robotics and consulting with automobile makers, laid out 

what she saw as a serious deficiency in testing of SDCs (Appendix C contains the complete 

testimony): 

 

While I enthusiastically support the research, development, and testing of self-driving 

cars, as human limitations and the propensity for distraction are real threats on the road, I 

am decidedly less optimistic about what I perceive to be a rush to field systems that are 
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absolutely not ready for widespread deployment, and certainly not ready for humans to be 

completely taken out of the driver’s seat.  … 

 

In my opinion, the self-driving car community is woefully deficient in its testing and 

evaluation programs (or at least in the dissemination of their test plans and data). 

 

Cummings goes on to compare the lack of testing—or the lack of publication of test results—

done by SDC developers with the rigorous processes of the Federal Aviation Administration. 

 

[T]he FAA (Federal Aviation Administration) has clear certification processes for aircraft 

software, and we would never let commercial aircraft execute automatic landings without 

verifiable test evidence, approved by the FAA.  To this end, any certification of self-

driving cars should not be possible until manufacturers provide greater transparency and 

disclose how they are testing their cars.  Moreover, they should make such data publicly 

available for expert validation. 

 

6.7 Safety Concerns and Political Risk 

If SDC developers need any reminder of the political risks stemming from negative publicity 

about the safety of a technology, they need look no further than the experiences of agribusiness 

introducing genetically modified organisms (GMOs) and of the nuclear power industry.  At least 

in part because of safety concerns of the public, only one nuclear power plant has been built in 

the US since 1996 [48].  Agribusiness firms first introduced GMOs in the 1990s, but despite their 

desirable traits of increased yield, increased vitamin content, drought resistance, resistance to 

insects, and reduced need for pesticides, GMOs have proven extremely controversial and 

resulted in many lawsuits.  Opponents claim that GMOs are dangerous to human and livestock 

health and harmful to the environment.  Currently many European countries even prohibit the 

growing of GMOs.  The objections to GMOs continue, even in the face of authoritative studies 

such as the National Academy of Sciences 2016 report, “Genetically Engineered Crops: 

Experiences and Prospects” that concluded: 

  

While recognizing the inherent difficulty of detecting subtle or long-term effects in health 

or the environment, the study committee found no substantiated evidence of a difference 

in risks to human health between currently commercialized genetically engineered (GE) 

crops and conventionally bred crops, nor did it find conclusive cause-and-effect evidence 

of environmental problems from the GE crops [49]. 

 

What should be worrisome for SDC proponents is that the public opposition to SDCs could turn 

out to be even greater than the opposition to GMOs because opposition to GMOs grew even 

though no documented deaths have ever been reliably and convincingly attributable to GMOs.  

Contrast that situation with fatal accidents involving SDCs.  Deaths can be reliably and 
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convincingly attributable to SDCs without having to conduct an expensive and time-consuming 

epidemiological study, as would be required for evaluating GMOs.  The risk to the whole SDC 

enterprise is that SDCs will be introduced without adequate testing and will result in many fatal 

accidents.  Politicians and consumer advocacy groups will then seize upon reports of SDC-

related deaths to advocate legislation that could greatly impede SDC testing or even eliminate 

certain types of SDC features entirely.   

 

Illustrations of the political risk were common in the months following fatal SDC accidents 

involving Uber in Arizona and Tesla in California in 2018.  See Figure 5.  After these accidents, 

a US Senator wanted “to ensure semi-autonomous cars are also included in [an SDC-related] bill, 

that there are requirements for all of the vehicles to have a manual override and that there is more 

transparency with the data and safety evaluations” [50].  A Consumers Union specialist on 

SDCs, commenting on the bill, said, “We want to make sure that data is broadly shared to 

demonstrate their safety before the rest of us have to be guinea pigs sharing the road” [50]. 

 

 
Figure 5.  National Transportation Safety Board employees examine an Uber autonomous car 

involved in a fatal crash in Tempe, Arizona. 
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Other government regulations have been proposed or already enacted.  New Hampshire 

considered a bill that would require SDC testers to specify dates and locations where testing 

would occur and put up a $10 million insurance bond.  Furthermore, each test vehicle would 

have to be followed by an escort vehicle [51].  California now requires each SDC to include “a 

process to communicate between the vehicle and law enforcement” [52].  In all, twenty-two 

states have passed some sort of SDC-related legislation [53]. 

  

According to a lengthy Consumer Reports article about SDCs, in interviews multiple experts said 

that pedestrian detection technology in current use “might not be advanced enough for public 

roads [54].  One expert declared that “a lack of transparency in testing, coupled with the desire 

for some states to attract investment without understanding the limitations of the technology, 

could mean unsafe autonomous vehicles are currently operating on public roads.”  Another 

expert, Duke University Professor Mary Cummings, whose Congressional testimony has been 

previously cited, was described as being pessimistic that the publicity surrounding the Arizona 

accident would “lead to a major policy change before another fatality takes place.”  She goes on 

to state that “The question on my mind is, how many more will have to happen before the big 

outcry happens?” [54] 

 

Besides the risk of legislation impeding the testing of SDCs, the introduction of SDCs will be 

delayed by the long time that legislative bodies will take to codify new traffic laws and 

regulations.  As MIT’s Rodney Brooks has observed, “It will take a lot of trial and error and time 

to get these laws right [9]. 

 

6.8 Self-Driving Cars Driving Habits 

As evidenced by its Safety Report [7], Waymo appears to be fully aware of the safety concerns 

of the public described in the previous section.  The report assures the reader that “Safety is at 

the core of Waymo’s mission [emphasis in the original]” and “Our commitment to safety is 

reflected in everything we do.”  The words, “safe” and “safety,” occur 232 times in the forty-

three-page document.  Similarly, General Motors “2018 Self-Driving Safety Report” states 

“Imagine a world with no car crashes.  Our self-driving vehicles aim to eliminate human driver 

error” and “the Cruise AV was built from the start to operate safely on its own, with no driver.  

We engineered safety into the vehicle in every single step of design, development, 

manufacturing, testing and validation.”  The words, “safe” and “safety” occur 152 times in the 

thirty-three-page document [12].  Ford’s forty-four-page safety report, “A Matter of Trust,” 

contains 141 occurrences of “safe” and “safety” [31].   

 

SDC developers’ concern about bad publicity from SDC accidents shows up not only in safety 

reports but also in the extremely risk-averse driving behavior that SDCs have been programmed 

to exhibit.  SDCs slow or stop frequently whenever a pedestrian or a nearby vehicle makes a 
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move that has the slightest possibility of intruding upon the SDCs’ path.  Human drivers, 

unaccustomed to following a vehicle that stops or slows at the slightest provocation, run into the 

rear end of the SDC.  In fact, of the (relatively few) accidents that SDCs have been involved in 

thus far in their development, many are caused by human drivers rear-ending the SDCs [55].   

 

Anecdotes abound about extreme conservativism in driving.  For instance, Wired Magazine’s 

Aarian Marshall, in an article entitled “My Herky-Jerky Ride in General Motors’ Ultra-Cautious 

Self Driving Car,” says:  

 

Towards the end of the ride, the car began to make a left turn into a crosswalk, and a 

woman pushing a stroller on the sidewalk accelerated toward the street.  Not the baby, I 

pleaded silently, before she turned to cross the perpendicular street instead.  Our car, 

meanwhile, had jerked to a stop—in the middle of the intersection.  Cruise employees 

later told me they’ve programmed their cars to anticipate the actions of pedestrians.  But 

right now, they don’t always get it right [55]. 

 

In an IEEE Spectrum article, MIT’s Rodney Brooks describes problems dealing with pedestrians: 

 

These [interactions with pedestrians] are the sorts of nuances that typically elude artificial 

intelligence.  What if cars trying for full autonomy can’t handle them?  The short answer, 

of course, is that they will not be able to accommodate pedestrians as smoothly as human 

drivers do. 

 

So what’s likely to happen is that driverless cars will be very wimpy drivers, slowing 

down—and angering—everybody [56]. 

 

And a study by the British Department for Transport predicts  

 

Because early models of driverless cars are actually expected to operate more cautiously 

than regular vehicles, road congestion will worsen, although as the percentage of SDCs 

on the road increases over time, eventually, perhaps after many years, congestion will 

decrease.  There are around thirty-two million conventional cars on the UK's roads.  As 

driverless cars come in, traffic flow could initially get worse rather than better, 

potentially for many years. 

 

Much will depend on how an autonomous car's parameters are set and just how 

defensively these vehicles will be programmed to drive [57]. 

 

A writer for the business magazine, Fast Company, described his experience in Waymo’s 

Arizona robotaxi: 
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Waymo’s next challenge is greater than anything a user interface alone can solve.  

Because if Waymo wants to make robot cars feel safe and comfortable, sooner or later, it 

has to teach them to drive in a way that feels more human. 

 

Simply put: When you ride in a Waymo vehicle, it just doesn’t feel like you’re being 

driven by a human.  At all.  The vehicle has a tendency to accelerate evenly through 

turns.  It stops painfully early for yellow lights.  Once it jerked the wheel out of the way 

of a pickup truck in the next lane—with a staccato sharpness I’ve never felt a human 

driver execute.  And often, it will gently tap the brakes or gas when I simply don’t know 

why.  On one such occasion, I glanced down to the screen.  Why were we speeding up 

and slowing down so often?  It ended up that my vehicle was responding to a car, maybe 

four lengths ahead.  I knew this because anything actionable—anything that the Waymo 

bot is considering in its driving decision—is highlighted in green on the screen.  That 

goes for pedestrians, bicyclists, even cars that are far removed from you in traffic.  If they 

glow green, Waymo is taking them into special account. 

 

So in this case, with that car so far ahead of us being highlighted, I quickly inferred that 

my Waymo was just keeping what it considered a safe distance, even if that would be 

“too safe” by my measures [58]. 

 

Similar observations have been made by a writer for the science news website, Live Science: 

 

A self-driving car must be able to distinguish between dangerous and harmless situations.  

Otherwise, it's going to be slamming on the brakes all the time for no reason.  … The cars 

also need to decide in sufficient time whether a pedestrian waiting on the sidewalk is 

likely to walk into traffic, or whether a bike is going to swerve left.  Human brains do a 

masterful job of sorting and reacting to these hazards on the fly, but the current crop of 

sensors just isn't equipped to process that data as quickly [43]. 

 

Another possible result of the driving style of SDCs is that extremely timid driving may invite 

bullying by aggressive human drivers.  These drivers, recognizing the SDCs’ extreme 

conservatism, could take advantage by performing aggressive driving maneuvers near an 

approaching SDC and forcing it to delay or stop, when it actually had the right of way. 

 

Part of the challenge for developers programming SDC driving behavior is that their program 

must not only prevent collisions but prevent them under the constraint that “humans don’t 

behave by the book.”  A vivid illustration of this point was the “Google car, in a test in 2009, that 

could not get through a four-way stop because its sensors kept waiting for other (human) drivers 

to stop completely and allow it to go.  The human drivers kept inching forward, looking for the 
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advantage—paralyzing Google’s robot.”  Since that time, Waymo has solved this problem, and  

now, at four-way stops, Waymo’s software “lets the car inch forward, as the rest of us might, 

asserting its turn while looking for signs that it is being allowed to go” [14].   

 

6.9 Cybersecurity  

SDCs may be vulnerable to malevolent or mischievous attacks.  A malicious actor with sufficient 

technical knowhow conceivably could hack into an SDC and cause the vehicle to have a severe 

collision, or even worse, cause simultaneous crashes of multiple SDCs in a given city.  

Pranksters could disable or deceive sensors and render the vehicle unable to move.  “A self-

driving car is a collection of networked computers and sensors wirelessly connected to the 

outside world.  Keeping the systems safe from intruders who may wish to crash cars—or turn 

them into weapons—may be the most daunting challenge facing autonomous driving”  [17].   

 

Similarly, two academic cybersecurity specialists in a World Economic Forum article titled 

“This is the major flaw with driverless vehicles that no one is talking about,” state “there are 

three main reasons why cars are becoming vulnerable to cyberattacks:” 

 

First, the different systems that make up a car are increasingly designed to work together 

to improve their efficiency and so they all need to be able to communicate, as well as 

being connected to a central control.  Adding autonomous systems that make cars partly 

or fully self-driving means the vehicles also have to connect to other cars and 

infrastructure on the road. 

 

But this opens up what was traditionally a closed system to outside, possibly malicious 

influences.  For example, we’ve seen demonstrations of attacks using cars’ Bluetooth, 

Wi-Fi and radio frequency on passive key entry systems, which all create possible entry 

points for hackers. 

 

Second, more features and functionality in cars mean more software and more 

complexity.  A single vehicle now uses millions of lines of code, put together in different 

ways in different components from different manufacturers.  This makes it hard for 

security testers to know where to look, and hard for auditors to check [that] a car 

complies with the rules.  If the software recently used by Volkswagen to circumvent 

emissions limits had been a malicious virus, it may have taken months or years to find the 

problem. 

 

Finally, the volume and variety of the data and content stored and used in a vehicle is 

ever increasing [for example,] information about the driver’s usual routes…Such a hoard 

of information would be very attractive to cyber criminals [59]. 
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Recognizing the threat, Waymo has devoted considerable resources to cybersecurity.  Critical 

functions such as steering and braking are isolated from outside communication.  Computational 

systems for determining vehicle motion are inaccessible from the vehicle’s wireless connections.  

Wireless communication between vehicles and the Waymo operations center are encrypted [7]. 

 

GM has also recognized the need to protect its vehicles from malicious interference and has 

introduced a number of design features to thwart cyberattacks [12]. 

 

6.10 Ethical and Legal Questions 

In addition to technical issues that raise concern about the widespread deployment of SDCs, the 

ethical and legal questions listed below exist.  Arriving at satisfactory answers to these questions 

may take years of legislation and litigation, especially given that motor vehicle rules are a state—

not federal—responsibility and thus fifty different legislation bodies must be dealt with. 

 

1.  Should SDCs containing flaws be widely deployed if the total number of deaths from all auto 

accidents decreased significantly, even though the deaths caused by the SDCs increased?  Rand 

Corporation researchers Nidhi Kalra and David Groves argue that tens of thousands of lives 

could be saved over a period of many years if SDCs were deployed that were only ten percent 

safer than human-operated vehicles. 

 

Many are looking to highly automated vehicles (HAVs)—vehicles that drive themselves 

some or all of the time—to mitigate the public health crisis posed by motor vehicle 

crashes.  But a key question for the transportation industry, policymakers, and the public 

is how safe HAVs should be before they are allowed on the road for consumer use.  From 

a utilitarian standpoint, it seems sensible that HAVs should be allowed on US roads once 

they are judged safer than the average human driver so that the number of lives lost to 

road fatalities can begin to be reduced as soon as possible.  Yet, under such a policy, 

HAVs would still cause many crashes, injuries, and fatalities—albeit fewer than their 

human counterparts.  This may not be acceptable to society, and some argue that the 

technology should be significantly safer or even nearly perfect before HAVs are allowed 

on the road.  Yet waiting for HAVs that are many times safer than human drivers misses 

opportunities to save lives.  It is the very definition of allowing perfect to be the enemy of 

good [37]. 

 

Reasoning along similar lines, Sergey Brin, the co-founder of Google, has said, "We don't claim 

that the cars are going to be perfect.  Our goal is to beat human drivers" [60].   But it is not 

certain that merely beating human drivers would be enough.  Will the public accept, say, a fifty 

percent reduction in highway deaths, if the remaining deaths are attributable to software and 

sensor errors in SDCs?  Robots may be held to a higher ethical standard than people, says 

Toyota’s Gill Pratt. 
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Society tolerates a significant amount of human error on our roads.  We are, after all, 

only human.  On the other hand, we expect machines to perform much better.  .  .  .  

Humans have shown nearly zero tolerance for injury or death caused by flaws in a 

machine [37].   

 

2.  Who is liable and who must carry motor vehicle insurance—owner, manufacturer, operator 

(of, for example, a robotaxi company), or driver (of a Level 3 SDC)?  The US Department of 

Transportation has produced a document, “Federal Automated Vehicles Policy,” that describes a 

framework for assigning liability [61]. 

 

3.  “Can [SDCs] even survive a tort system like ours,” given that “software like that for self-

driving cars will never be capable of testing comprehensively for all conceivable states and 

configurations?” asks Wall Street Journal columnist Holman Jenkins [62].  Tort lawyers would 

relish the possibility of lawsuits against deep-pocketed SDC corporations if large numbers of 

accidents could be attributed to errors in vehicle software and sensors.  The aforementioned 

experience of agribusiness developing GMOs shows what can happen. 

 

4.  Is passenger privacy protected and who controls personal data?  During operation of an SDC, 

information about the time, origin, and destination of all trips will be routinely transmitted from 

the vehicle to the vehicle operations center.  This raises obvious questions about who owns the 

information, whether it is secure, and whether it can be accessed by law-enforcement agencies or 

for commercial use. 

 

6.11 Effect of Concerns Considered as a Whole 

It seems reasonable to imagine that—with enough time, money, and ingenuity—any one of the 

concerns described above could be eliminated.  But going from the elimination of a single 

concern to the elimination of all of them is a huge jump in complexity.  Given the sheer number 

of concerns, their depth, and the fact that any one of them could alone delay for many years or 

even completely prevent the introduction of SDCs, predictions about SDCs revolutionizing 

transportation within the next five or even ten years seem overly optimistic.  Of course, large 

corporations have made huge investments in SDC development and will certainly try to defend 

these investments.  These companies have the financial resources to hire talented engineers, AI 

specialists, attorneys, public-relations staff, etc.  and know how to influence the political process 

through lobbying, but it remains to be seen if the companies’ technical, legislative, and publicity 

efforts will be sufficient. 
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7.  The Future of Self-Driving Cars 

 

[A] free-range Level 5 autonomous car is a very long way out. – Waymo CEO John 

Krafcik [63] 

 

[Claims of the imminent widespread introduction of SDCs] is where the hype has gotten 

far out of step with the reality of what the technology is capable of doing … We’re not 

going to see it in a leap.  It’s going to be a series of gradual step-by-step improvements.  

So the idea that there’s going to be a big leap and all of a sudden this Nirvana’s going to 

arrive is nonsense.  This is going to be a long slog through lots of generations of 

incremental technology, and the people who claim that they’ve got a silver bullet, and it’s 

going to solve all the world’s problems are either fools or charlatans. – Steven Shladover, 

researcher at Partners for Advanced Transportation Technology at the University of 

California, Berkeley [64] 

  

 7.1 Gartner’s Hype Cycle  

The business advisory firm, Gartner, Inc., has formulated a “hype cycle” concept that describes 

the typical progress of a major new technology [65].  The cycle begins with an “innovation 

trigger” that involves a real or potential technological breakthrough promising great benefits.  

The trigger then creates grossly inflated expectations and attracts large investments.  But as 

research and development proceed, unforeseen problems and limitations begin to emerge, and 

the inflated expectations disappear.  

 

Disappointed managers and investors enter a “trough of disillusionment.”  Interest and funding 

wane, some companies give up or go out of business, and product introduction dates are 

postponed.  If the technology still has promise, a slow steady effort may ultimately lead to the 

“plateau of productivity.”  The technology is useful and productive, but generally nowhere near 

the previous peak of inflated expectations.   

   

For driverless vehicles, the innovation trigger occurred around 2007 and consisted of two factors.  

First, the technology was ripe: technical breakthroughs had recently occurred in AI and laser-

based sensors (LiDAR) while robotics had already achieved an advanced state of development.  

Second, in 2007 the US government’s Defense Advanced Research Projects Agency (DARPA) 

sponsored an event called the “DARPA Urban Challenge,” a competition consisting of making 

an autonomous vehicle that could navigate a specified course laid out in an abandoned Air Force 

base.   

 

Unlike two earlier DARPA Challenges that involved rural driving only, the Urban Challenge 

involved navigating through intersections, merging into traffic, parking in a parking lot, and 

handling other urban road situations.  The result, in Wired writer Alex Davies’ words, was that 
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“DARPA created a community eager to crack the self-driving car problem” [66] and 

“unofficially kicked off today’s self-driving technology initiatives” [1].  The competition 

attracted the interest of top talent in robotics, sensor technology, and artificial intelligence.  The 

first step of the hype cycle—grossly inflated expectations and large investments—was taken.  

Auto companies and many companies making sensors and applying AI invested billions of 

dollars in SDC research and development. 

 

Today SDC technology appears to be entering the trough of disillusionment [21].  Many 

companies and individuals have failed to deliver on what are now recognized as overly 

optimistic promises.  In 2012, Google’s CEO Sergey Brin promised that self-driving cars would 

be available to everyone in five years [67].  In 2015, Google said that in five years an 

autonomous car would be ready.  In 2014, Elon Musk made a similar five-year prediction.  

Volvo said in a 2014 announcement that it would distribute one hundred SDCs to families in 

Gothenburg, Sweden; in 2017, this was changed to a distribution date of 2021.  Ford’s CEO felt 

it necessary to dampen expectations for the Ford SDCs to be introduced in 2021 by remarking, 

“But the nature of the romanticism by everybody in the media about how this robot works is 

overextended right now” [21]. 

 

What, then, can be expected from current SDC research and development?  Here is an answer 

provided by Wired Magazine’s Aarian Marshall, who has written extensively on SDCs: 

 

Okay, so you won’t get a fully autonomous car in your driveway anytime soon.  Here’s 

what you can expect, in the next decade or so: Self-driving cars probably won’t operate 

where you live, unless you’re the denizen of a very particular neighborhood in a big city 

like San Francisco, New York or Phoenix.  These cars will stick to specific, meticulously 

mapped areas.  If, by luck, you stumble on an autonomous taxi, it will probably force you 

to meet it somewhere it can safely and legally pull over, instead of working to track you 

down and assuming hazard lights grant it immunity wherever it stops. 

 

The cars will be impressive, but not infallible.  They won’t know how to deal with all 

road situations and weather conditions. 

 

You may well forget about self-driving cars for a few years.  You might joke with your 

friends about how silly you were to believe the hype.  But the work will go on quietly, in 

the background.  The news will quiet down as developers dedicate themselves to precise 

problems, tackling the demons in the details. 

 

The good news is that there seems to be enough momentum to carry this new industry out 

of the trough and onto what Gartner calls the plateau of productivity [21]. 
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7.2 Aiming for Less Than Level 5 

Much of the present paper has been devoted to questioning and deflating some of the more 

exaggerated claims being made for SDCs.  But it should be emphasized that present-day SDC 

research still may be valuable even though Level 5 or even Level 4 vehicles have not been 

achieved.  Research on sensors, AI, situation awareness, movement prediction, advanced road 

mapping, vehicle-to-vehicle communication, driver warning, imminent-collision detection, lane 

tracking, lane departure alerts, image recognition, and other SDC technologies should eventually 

result in much safer human-driven vehicles.  A super safe Level 2 vehicle would not fulfill the 

science-fiction-like predictions that have been envisioned for Level 5 vehicles but nevertheless 

could save many lives.  Such vehicles would also be much more readily accepted by the public.  

The billions of dollars invested and the huge effort of the talented people in the field would not 

be wasted. 

 

Several prominent SDC researchers have recognized the importance of what can be achieved by 

aiming for goals less than Level 5.  Huei Peng, the director of Mcity, the University of 

Michigan’s autonomous- and connected-vehicle lab, is described as presenting the position of the 

traditional automakers when he says: 

 

Instead of aiming for the full autonomy moon shot, they are trying to add driver-

assistance technologies, “make a little money,” and then step forward toward full 

autonomy.  It’s not fair to compare Waymo, which has the resources and corporate 

freedom to put a $70,000 laser range finder on top of a car, with an automaker like Chevy 

that might see $40,000 as its price ceiling for mass-market adoption.  GM, Ford, Toyota, 

and others are saying “Let me reduce the number of crashes and fatalities and increase 

safety for the mass market.” Their target is totally different.  We need to think about the 

millions of vehicles, not just a few thousand [68]. 

 

Similarly, Toyota’s Gill Pratt rejects pursuit of the “full autonomy moon shot”: 

 

[I]t’s important to not say, “We want to save lives therefore we have to have driverless 

cars.”  In particular, there are tremendous numbers of ways to support a human driver and 

to give them a kind of blunder prevention device which sits there, inactive most of the 

time, and every once in a while, will first warn and then, if necessary, intervene and take 

control.  The system doesn’t need to be competent at everything all of the time.  It needs 

to only handle the worst cases [2]. 

 

Elsewhere, Pratt has been described as “championing ‘guardian angel’ technology that could find 

the best evasive strategies in an instant if trouble looms” [69]. 

 

MIT’s John Leonard also advocates a guardian angel system: 
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Until cars can be 100 percent autonomous—which Google is pursuing—Leonard 

advocates what he calls a “guardian angel system.”  In it, a human has to pay attention 

the entire trip; auto-driving kicks in only when he makes a mistake or when an accident 

looks likely [4]. 

 

7.3 What May Appear First 

 

Fleets of robotaxis and delivery vehicles are usually mentioned as the first applications of SDC 

technology to general-purpose driving.  Ford is launching a fleet of pizza-delivery vehicles in 

Miami.  Ford and GM plan to launch fleets of robotaxis in various cities, and Waymo already has 

[Figure 6]. 

 

 
Figure 6.  Waymo Chrysler Pacifica Hybrid minivan used as robotaxi in Chandler, Arizona. 

Fleets offer many advantages for SDC developers because they have complete control over 

modifications, software updates, inspections, fueling, and maintenance.  In addition, because the 

developers are the owners and will not sue themselves, the number of expected lawsuits over 

accidents will be reduced.  Also, using SDCs for delivering goods has the advantage that no 

passenger in the SDC will be injured in an accident [12, 63, 70, and 71]. 

 

 7.4 Last Word 

Perhaps the last word about the future of SDCs in the US should come from a source that has no 

financial stake in the matter.  The NHTSA webpage on Automated Vehicles for Safety contains 

the following Frequently Asked Question and answer: 

 

 Question: When will self-driving vehicles be available? 
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Answer: Automated or “self-driving” vehicles are a future technology rather than one 

that you’ll find in a dealership tomorrow or in the next few years.  A variety of 

technological hurdles have to be cleared, and other important issues must be addressed 

before these types of vehicles can be available for sale in the United States [72]. 
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Appendix: Scenario types used by Google SelfDriving Vehicle Team 
 
The following scenarios are used by Google’s selfdriving vehicle development team. They are 
some of the scenarios we use to   ensure our vehicles are capable of operating safely in the 
reasonably foreseeable scenarios that could present a safety hazard. We try to ensure 
objectivity in each scenario. Theses scenarios are part of a comprehensive system safety 
evaluation process that also includes other analysis such as simulation and public road driving, 
along with a broad set of structured tests that we conduct at our test facility.  The following types 
of scenarios are designed to ensure our vehicles have: 
 
1. Basic Behavioral Competencies 
 
We believe that our fully selfdriving vehicles should be able to successfully demonstrate 
competency in a variety of reasonably foreseeable traffic situations that are within the vehicle’s 
Operational Design Domain  (ODD), i.e., the specific operating conditions under which the 
driving automation system or feature is designed to function.  An ODD may include geographic, 
roadway, environmental, traffic, speed, and/or temporal limitations.  For example, if the vehicle’s 
ODD specifies that operations in snow or on routes with railroad crossings are excluded, our 
vehicle would not be expected to demonstrate those competencies.  Instead, our vehicles 
should be capable of readily identifying such conditions and taking appropriate action as soon 
as they appear. 
 
2. Safe responses to hazards unique to selfdriving technology 
 
We anticipate that all selfdriving vehicles could entail certain hazards that are unique to 
selfdriving due to the vehicle's’ complete or partial reliance on the sensors and computers that 
make up the selfdriving system. Therefore, we ensure that our selfdriving vehicles respond 
properly to factors such as sensor failure, system failure, power failure, and safetycritical faults.  
 
3. Avoidance or mitigation of common crash scenarios 
 
Certain types of crashes account for a substantial percentage of all crashes.  Avoiding or 
mitigating those kinds of crashes, therefore, is an important goal for our vehicle development 
program.  NHTSA recently published data showing the distribution of precrash scenarios.  7

Four scenarios accounted for the vast majority of crashes:   
● 29 percent were rearend crashes 
● 24 percent of the vehicles were turning or crossing at intersections just prior to the 

crashes   
● 19 percent of the vehicles ran off the edge of the road 
● 12 percent involved vehicles changing lanes 

Therefore, these scenarios figure prominently in the evaluation of our selfdriving vehicles. 

7 [Docket No. NHTSA20150119] New Car Assessment Program (NCAP), December 8, 2015, <http://goo.gl/plFfoH> 
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Categories  Scenario types 

Behavioral competence in common 
traffic situations. 

If any competency is outside the vehicle's 
operational design domain, that should be 
documented and the vehicle's ability to recognize 
and adhere to the design limitations should be 
demonstrated. 

Detection and Response to Safety Signs, 
Traffic Signals and Emergency Warnings   

Demonstrate appropriate response to traffic 
signs, signals, and emergency warnings   

Signs   

 
Selfdriving car (SDC) approaches stop sign at 
posted speed 

 
SDC approaches temporary stop sign at posted 
speed 

 
SDC approaches handheld stop sign at posted 
speed 

  SDC approaches yield point at posted speed 

  SDC approaches speed limit sign 

  SDC approaches school zone sign 

  SDC approaches special speed restriction sign 

  SDC approaches active work zone sign 

 
SDC approaches roadway directional signs 
(OneWay, Do Not Enter, etc.) 

  SDC approaches "Lane Ends" sign 

Traffic signals (lights)   

SDC approaches each of these signals:   

  Vertical Signal Alignment 

  Horizontal Signal Alignment 

  Flashing red 

  Flashing yellow 

  Blackout 

  LED Pedestrian Signal 

School bus  Stopped in same or opposite 
direction   

  SDC approaches stopped school bus 
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SDC approaches moving school bus while bus 
activates hazards with intent to stop for 
pickup/dropoff 

Emergency Vehicles (EVs) using lights and/or 
sirens while approaching or stopped   

 
SDC approaches intersection: EV approaches 
from behind, intention to pass SDC 

 
SDC moving with no intersection ahead: EV 
approaches from behind, intention to pass SDC 

  SDC approaches EV using lights while stopped 

Work Zones   

  SDC approaches work zone on straight road 

  SDC approaches work zone on curved road 

Lane shift/closure   

 
SDC approaches lane closure/shift on straight 
road 

 
SDC approaches lane closure/shift on curved 
road 

Hand signals from law enforcement or work 
crews   

 
SDC approaches law enforcement officer giving 
hand signals 

  SDC approaches work crew giving hand signals 

Railroad Crossing   

 

SDC approaches crossing with warning devices 
(flashing lights, bell, and/or crossing gates) 
activated 

 
SDC approaches unprotected crossing (no lights 
or gates) 

Typical Forward Movements   

Demonstrate ability to perform movement 
safely.   

Turns   

SDC approaches and turns at each of the 
following types of intersections:   

  Signalized intersection: make left turn with arrow 

 
Signalized intersection: make left turn where no 
arrow 
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Signalized intersection: Simultaneous protected 
left turns (2 designated parallel turn lanes) 

 
Signalized intersection: Simultaneous protected 
left turns (1 oncoming turn lane) 

  Stop Sign intersection: 2 way stop 

  Stop Sign intersection: 4 way stop 

  Green light: make right turn 

  Red light: make right turn if permitted 

  Nonsignalized intersection: make right turn 

  Nonsignalized intersection: make left turn 

Lane changes   

SDC makes each lane change described 
below:   

  Right lane change 

  Left lane change 

  Lane change from stop (zerospeed lane change) 

  Lane change cancellation 

  Emergency or faultinduced lane change 

Pullover   

 
SDC pulls over to right to pick up or drop off 
passenger 

 
SDC pulls over based on faultinduced 
emergency 

 
SDC pulls over in response to emergency vehicle 
using siren and/or lights 

Transitions from roadway type   

  SDC exits freeway to arterial road 

  SDC enters freeway from arterial road / onramp 

Merge   

  SDC allows merging traffic to enter lane 

  SDC merges into converging lanes 

  SDC merges from slip lane 

Traffic circles (Roundabout)   

  SDC approaches and travels through roundabout 
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Movements Involving Reverse 
Gear   

Demonstrate ability to perform movement 
safely   

 
SDC performs simple backing movement 
(straight path/curved path) 

 
SDC performs backing movement with 
person/object behind 

  SDC performs threepoint turn 

   

Recognition and Avoidance of People, 
Vehicles and Objects   

Demonstrate ability to detect and avoid other 
road users and objects   

Vehicles   

 

SDC follows vehicle and maintains safe 
longitudinal distance at different speeds while 
also providing safe lateral spacing from vehicles 
in adjacent lanes 

 
SDC approaches vehicle entering road from 
driveway 

  SDC accommodates vehicle cutting into its lane 

 

SDC moving forward does not move into lane 
occupied by motorcycle traveling parallel to SDC 
and provides adequate room. 

Pedestrians   

 
SDC on straight road approaches pedestrian 
crossing perpendicularly (right) 

 
SDC on straight road approaches pedestrian 
crossing perpendicularly (left) 

  SDC makes right turn, pedestrian in crosswalk 

  SDC makes left turn, pedestrian in crosswalk 

 
SDC approaches pedestrian walking in road, 
parallel to SDC's travel 

 
SDC approaches pedestrian not in crosswalk but 
in path (jaywalker) 

 
SDC approaches and passes pedestrian exiting 
parked vehicle 
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SDC approaches and passes pedestrian standing 
near vehicles 

   

Cyclists   

 
SDC moves forward, parallel to cyclist in 
designated bike lane 

 
SDC moves forward, parallel to cyclist in lane not 
designated as bike lane 

 
With cyclist traveling in parallel lane, SDC 
executes right turn with cyclist approaching 

  SDC approaches cyclist crossing SDC path 

Animals and other objects   

  SDC approaches animal in road 

  SDC approaches large debris in road 

   

Safe response to hazards unique 
to AV technology   

Demonstrate ability to detect condition and 
take appropriate response   

Conditions involving system or component 
failure or fault 

Failure or fault is simulated or injected and 
response observed in the following situations: 

  Power Failure 

  Sensing Failure & Obstruction 

  Computing Failure 

 
Drive System Failure (including disengagements 
caused by system) 

  Fault Handling and response 

Weather conditions outside of vehicle's 
capability 

SDC movement attempted under unsuitable 
conditions; response observed 

Autonomous vehicle interaction 
Two SDCs approach 2way stop from opposite 
directions 

Security 

Subject SDC to internal tests to ensure its 
systems are protected from malicious attacks, 
vulnerabilities and environmental interference 

Operational safety  SDC about to operate with a door ajar 

  SDC moving forward; passenger opens door 

  SDC operating in conditions requiring lighting 
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Avoidance or mitigation of 
major crash types   

Rearend collisions   

Demonstrate ability to meet all of NHTSA’s 
NCAP tests for crashimminent braking 

SelfDriving Car (SDC) approaches stopped lead 
vehicle 

 
SDC approaches target lead vehicle traveling at 
slower speed 

 
SDC approaches target lead vehicle traveling at 
slower speed and initiating strong braking 

 
False positive: SDC drives over steel trench plate 
at 45 mph and 25 mph 

Intersection collisions   

Demonstrate ability to detect other vehicles 
entering path at perpendicular angle and 
apply brakes 

SDC approaches intersection, Vehicle A 
approaches from right 

 
SDC approaches intersection, Vehicle A 
approaches from left 

 
SDC prepares to turn across unprotected 
intersection, oncoming Vehicle A approaches 

Road departure   

Demonstrate ability to steer clear of roadway 
edge  SDC travels down straight road 

  SDC travels down curved road 

Lane departure   

Demonstrate ability to stay within lane 
SDC travels down straight road with visible lane 
marking 

 
SDC travels down straight road with faded or 
missing lane marking 

 
SDC travels down curved road with visible lane 
marking 

 
SDC travels down curved road with faded or 
missing lane marking 

  SDC travels down wet road with lane marking 

 
SDC travels down wet road with faded or missing 
lane marking 
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Appendix B. To Dispel the Magic of Deep Learning 

 

(Excerpted from article: Pinker, Steven. “Enlightenment Wars: Some Reflections on 

‘Enlightenment Now,’ One Year Later.” January 14, 2019.  Quillette. Accessed 1-18-2019.  

https://quillette.com/2019/01/14/enlightenment-wars-some-reflections-on-enlightenment-now-

one-year-later/. Steven Pinker is Professor of Psychology at Harvard.)  

https://quillette.com/2019/01/14/enlightenment-wars-some-reflections-on-enlightenment-now-one-year-later/
https://quillette.com/2019/01/14/enlightenment-wars-some-reflections-on-enlightenment-now-one-year-later/


To dispel the magic: Deep learning networks are designed to convert an input, such as the pixels 

making up an image or the shape of an auditory waveform, into a useful output, like a caption of 

the picture or the word that was spoken. The network is fed millions of tidbits of information 

from the input, computes thousands of weighted combinations of them, then thousands of 

weighted combinations of the weighted combinations, and so on, each in a layer of simple units 

that feeds the next, culminating in a guess of the appropriate output. The network is trained by 

allowing it to compare its current guess with the correct output (supplied by a “teacher”), convert 

the difference into a huge number of getting-warmer/getting-colder signals, propagate those 

signals backwards to each of the hidden layers, and tune their weights in directions that make its 

guess closer to the correct answer. This is repeated millions of times, which has become feasible 

thanks to faster processors and bigger datasets. (For a more detailed explanation of the first 

generation of these models, see my books How the Mind Works and Words and Rules.) 

Deep learning networks are “deep” only in the sense of having many layers of units; their 

understanding is onion–skin thin. After having the daylights trained out of them, they can map 

inputs onto outputs surprisingly well (which is how Facebook knows whether you’ve uploaded a 

picture of a person or a cat), but they don’t represent the meaning of what they compute. A 

translation network can’t paraphrase sentences or answer questions about them; a video-game-

playing program has no grasp of the objects or forces in its simulated world and cannot cope 

with a minor change in that world or in the rules of the game. And since the program’s 

intelligence is smeared across millions of little numbers, we humans often can’t reconstruct how 

it came to its decisions. That’s what has led to fears that AI will have an agenda inscrutable to us, 

perpetuate biases that we’re unaware of, and pose other threats to Enlightenment rationality. 

But this is exactly the reason that many AI experts believe these networks, despite their recent 

successes, have hit a wall, and that new kinds of algorithm, probably incorporating explicit 

knowledge representations, will be needed to power future advances. These include Gary 

Marcus, building on analyses he and I developed in the 1990s; Judea Pearl, the world's expert on 

causal modeling; and even Geoffrey Hinton, the inventor of deep learning himself. Marcus, 

together with the computer scientist Ernest Davis, makes this case in the forthcoming Reboot: 

Getting to AI We Can Trust. If Marcus and Davis are right, it's no accident that artificial 

intelligence will have to represent human ideas and goals more explicitly. AI is a tool, which 

serves at our pleasure. Unless its workings are transparent enough that we can engineer it to 

respect our goals, conform to common sense, stay within limits we set, and correct its mistakes, 

it won't be truly intelligent. 

 

https://stevenpinker.com/publications/how-mind-works
https://stevenpinker.com/publications/words-and-rules
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Hands Off: The Future of Self-Driving Cars 

 

March 15th, 2016 

 

Good afternoon Chairman Thune, Ranking Member Nelson, and distinguished members of the 

committee. Thank you for the opportunity to appear before you to discuss issues related to the 

future of self-driving cars in the United States.  

 

I am the director of Duke Robotics and the Duke University Humans and Autonomy Laboratory, 

which focuses on the multifaceted interactions of humans and autonomous systems in complex 

sociotechnical settings. I have conducted driving research and provided future technology 

recommendations to automotive manufacturers for more than a dozen years including Ford, 

Nissan, Toyota, and Google X
1
. I was the program manager for a $100 million Navy robotics 

helicopter that carries sensors very similar to those on self-driving cars. I am also currently 

conducting research for the National Science Foundation on the interaction of self-driving cars 

and pedestrians.  

 

While I enthusiastically support the research, development, and testing of self- driving cars, as 

human limitations and the propensity for distraction are real threats on the road, I am decidedly 

less optimistic about what I perceive to be a rush to field systems that are absolutely not ready 

for widespread deployment, and certainly not ready for humans to be completely taken out of the 

driver’s seat.  

 

The development of self-driving car technologies has led to important advances in automotive 

safety including lane departure prevention and crash avoidance systems. While such advances 

are necessary stepping stones towards fully capable self-driving cars, going from automated lane 

changing or automated parking to a car that can autonomously execute safe control under all 

possible driving conditions is a huge leap that companies are not ready to make.  

 

Here are a few scenarios that highlight limitations of current self-driving car technologies: The 

first is operation in bad weather including standing water on roadways, drizzling rain, sudden 

downpours, and snow. These limitations will be especially problematic when coupled with the 

inability of self-driving cars to follow a traffic policeman’s gestures. 

 

 

_________________________ 
1
 See the attached paper, Cummings, M.L., & J. C Ryan, “Who Is in Charge? Promises and Pitfalls of Driverless 

Cars.” TR News, (May-June 2014) 292, p. 25-30.  



Another major problem with self-driving cars is their vulnerability to malevolent or even 

prankster intent. Self-driving car cyberphysical security issues are real, and will have to be 

addressed before any widespread deployment of this technology occurs. For example, it is 

relatively easy to spoof the GPS (Global Positioning System) of self-driving vehicles, which 

involves hacking into their systems and guiding them off course. Without proper security 

systems in place, it is feasible that people could commandeer self-driving vehicles (both in the 

air and on the ground) to do their bidding, which could be malicious or simply just for the thrill 

and sport of it.  

 

And while such hacking represents a worst-case scenario, there are many other potentially 

disruptive problems to be considered. It is not uncommon in many parts of the country for people 

to drive with GPS jammers in their trunks to make sure no one knows where they are, which is 

very disruptive to other nearby cars relying on GPS. Additionally, recent research has shown that 

a $60 laser device can trick self- driving cars into seeing objects that aren’t there. Moreover, we 

know that people, including bicyclists, pedestrians and others drivers, could and will attempt to 

game self-driving cars, in effect trying to elicit or prevent various behaviors in attempts to get 

ahead of the cars or simply to have fun.  

 

Lastly, privacy and control of personal data is also going to be a major point of contention. These 

cars carry cameras that look both in and outside the car, and will transmit these images and 

telemetry data in real time, including where you are going and your driving habits. Who has 

access to this data, whether it is secure, and whether it can be used for other commercial or 

government purposes has yet to be addressed.  

 

So given that these and other issues need to be addressed before widespread deployment of these 

cars, but understanding that there are clear potential economic and safety advantages, how can 

we get there with minimal risk exposure for the American public? In my opinion, the self-driving 

car community is woefully deficient in its testing and evaluation programs (or at least in the 

dissemination of their test plans and data), with no leadership that notionally should be provided 

by NHTSA (National Highway Traffic Safety Administration). Google X has advertised that its 

cars have driven 2 million miles accident free, and while I applaud this achievement, New York 

taxi cabs drive two million miles in a day and a half. This 2 million mile assertion is indicative of 

a larger problem in robotics, especially in self-driving cars and drones, where demonstrations are 

substituted for rigorous testing.  

 

RAND Corporation says that to verify self-driving cars are as safe as human drivers, 275 million 

miles must be driven fatality free. So that means we need a significantly accelerated self-driving 

testing program, but it is not simply good enough to let self- driving cars operate in California or 

southern Texas to accrue miles. NHTSA needs to provide leadership for a testing program that 

ensures that self-driving cars are rigorously tested for what engineers call the “corner cases”, 

which are the extreme conditions in which cars will operate. We know that many of the sensors 

on self-driving cars are not reliable in good weather, in urban canyons, or places where the map 

databases are out of date. We know gesture recognition is a serious problem, especially in real 

world settings. We know humans will get in the back seat while they think their cars are on 

“autopilot”. We know people will try to hack into these systems.  

 



Given self-driving cars’ heavy dependence on probabilistic reasoning and the sheer complexity 

of the driving domain, to paraphrase Donald Rumsfeld, there are many unknown unknowns that 

we will encounter with these systems. But there are many known knowns in self-driving cars that 

we are absolutely aware of that are not being addressed or tested (or test results published) in a 

principled and rigorous manner that would be expected in similar transportation settings. For 

example, the FAA (Federal Aviation Administration) has clear certification processes for aircraft 

software, and we would never let commercial aircraft execute automatic landings without 

verifiable test evidence, approved by the FAA. To this end, any certification of self-driving cars 

should not be possible until manufacturers provide greater transparency and disclose how they 

are testing their cars. Moreover, they should make such data publicly available for expert 

validation.  

 

Because of the lack of safety evidence, I agree with California’s recent ruling that requires a 

human in the driver’s seat. However, while I generally support individual state governance on 

these issues, the complexity of the operation and testing of robotic self-driving cars necessitates 

strong leadership by NHTSA, which has generally been absent. But as I testified in front of this 

committee two years ago
2
, the US government cannot and has not maintained sufficient staffing 

in the number of people it needs who can understand, much less manage, complex systems such 

as self-driving cars. So it is not clear whether NHTSA or any other government agency can 

provide the leadership needed to ensure safety on American roads.  

 

Let me reiterate that as a professor in the field of robotics and human interaction, I am 

wholeheartedly in support of the research and development of self-driving cars. But these 

systems will not be ready for fielding until we move away from superficial demonstrations to 

principled, evidenced-based tests and evaluations, including testing human/autonomous system 

interactions and sensor and system vulnerabilities in environmental extremes. To this end, in 

collaboration with private industry, NHSTA should be providing strong leadership and guidance 

in this space.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

____________________ 
2
 “The Future of Unmanned Aviation in the U.S. Economy: Safety and Privacy Considerations”, January 15th, 

2014.  




